Software, Programming, and Run-Time Coordination for Distributed Robotics

Grupen, Hanson, Ramamritham Computer Science Department University of Massachusetts

Control Structure for Conditioning Learning and Adaptation

- exploiting redundancy in distributed, multi-robot systems null space control interaction
- ✓ interaction-based representations state estimation from process dynamics
- developmental programming paradigm constraint-based control composition physiology - single robot – pairs of robots – teams of robots

Growing a Distributed Controller

Outline:

- UMass UBot hardware configuration, motor unit
- Individual Behavior
 - motor skills: time, energy, precision path tracking policies
 - concurrent control "subject-to" null space operator
 - perceptual skills: learning to recognize environmental features
- Coordinated Behavior exploiting redundancy
 - equivalent 2-way coordination controllers
 - n-way coordination configurations

UMass UBot

- Sensor Layer: vision, (pyrometer, acoustic)
- IR Layer: obstacle detection, inter-robot communication
- Brain board: DIMM PC, RT kernel, I²C, embedded Scenix
- Power Layer: regulation, motor drivers
- Mobility Layer: batteries, motors, drive train

UBot Control Knowledge Impedance Control Policies

parametric control $c_i(X0, K, B)$

harmonic functions minimum hitting probability interaction-based state representation

"impedance codes"

if
$$(Ke_i + Be_i) < \tau$$

 $p(c_i) = TRUE$

Learning Performance

training set

 ϵ -greedy training (ϵ =0.1)

stepwise reward

time: $r = -\Delta t/\Delta s$

energy: $r = -\Delta E$

evaluation: independent test track

greedy evaluation: 20 laps plotted avg reward: 10 laps

Multi-Objective Controllers Null Space Control Interactions

precision - *aka* minimum hitting probability

Motor Interaction: Parametric Path Control

R denotes a set of robots with proprietary CPUs, effectors, sensors, and communication

Goals: g(j) denotes a goal set derived from robot j (observed or communicated)

harmonic potential: minimum hitting probability

control basis:
$$\{ \Phi_i^{g(j)} \}$$
 i, j in R

 $p(\phi_i^{g(j)})$ evaluates TRUE if robot i is in goal set g(j)

Example: Path Control Parameterization

search behavior

oworld robot i

1 robot search simulation

Distributed Behavior

Attack/Repel

Oecophylla longinoda (African weaver ant)

p = [nest food alert bite]

swarm simulation

Push/Pull Kinematic Constraints

if robot *j* is seeking an external goal:

"push" relation
$$\phi_j^g \triangleleft \phi_j^{g(i)}$$

2-robot search simulation (IR-based)

"pull" relation
$$\phi_j^g \triangleleft \phi_i^{g(j)}$$

Example: Legal 3-Robot Controllers

equivalence class of *correct* controllers with varying quality – CPU, comm bandwidth, power, time

Kinematic Condition

line-of-sight network connectivity

$$G_{k}^{n} = \begin{bmatrix} \phi_{0}^{\log_{0}} & \phi_{0}^{\log_{1}} & \dots & \phi_{0}^{\log_{k}} \\ \phi_{0}^{\log_{0}} & \phi_{0}^{\log_{1}} & \dots & \phi_{0}^{\log_{k}} \\ \phi_{0}^{\log_{0}} & \phi_{0}^{\log_{1}} & \dots & \phi_{0}^{\log_{k}} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{k}^{\log_{0}} & \phi_{k}^{\log_{1}} & \dots & \phi_{k}^{\log_{k}} \end{bmatrix}^{n}$$

$$p(G) = TRUE \text{ when all elements } g_{ij} = 1$$

$$\text{all elements } g_{ij} = 1$$

G defines the equivalence class of "network preserving" control options

Example: Search and Bounded Overwatch

5-robot search simulation (vision-based)

an equivalence class including:

- all permutations of robots,
- all network topologies, and
- all pairwise push/pull configurations

localization at 7-15 Hz

baseline variation 1-2m

Stable Real-Time Adaptation

Deliverable UMass Technology

UBot implementation

- hardware/firmware implementation
- be code RT control/adaptation, graphical programming
- concurrent, multi-initiative policies

Distributed, Multi-Robot Control

- generalized null space "subject-to" compositional framework
- structure for learning to optimize multi-robot behavior
- policies for search and mapping, leader-follower, network connectivity, bounded overwatch
- reconfigurable "virtual" sensors and coordinated mobility